If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+50x+500=0
a = 1; b = 50; c = +500;
Δ = b2-4ac
Δ = 502-4·1·500
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(50)-10\sqrt{5}}{2*1}=\frac{-50-10\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(50)+10\sqrt{5}}{2*1}=\frac{-50+10\sqrt{5}}{2} $
| 5(w+4)=4(w+77) | | 3(y-2)+5=-3(y-3)+6y | | 9x-7+2x=14 | | 3/2y-5=16 | | 7(v-1)=21 | | 5(u+4)=40 | | 2(×-5)-3(2x-8)=16-6(4x-3) | | 5.9-(3x+2.5)=0.5x | | 5(2x-1)=3x+12 | | 2(8+5x)=96 | | 2x+20+8=x+21 | | 2c-4=7+3 | | 2x+15=x+65 | | 10n^2+3=43 | | 3x+7=31-x | | 9y+45=55 | | 6x-15=65 | | 9x-10=2x+23 | | 16=4x^ | | 11.5×d=23 | | 8(t-3)=7t-13 | | X-5(2/3x)=-28 | | -3x^2+12x-14=0 | | -(5-12y)-(8-8y)+12y-3-(5-12y)=0 | | 3(s-4)=2s | | -(5-12y)-(8-8y)=12y-3-(5-12y) | | 3r-4=17-4r | | 37=w/3+10 | | 3(x+5)=3x-3 | | 39=6.c | | 2q-3=3-4q | | 2=2y-14 |